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Abstract
We analyze by numerical simulations and mean-field approximations an
asymmetric version of the stochastic sandpile model with height restriction
in one dimension. Each site can have at most two particles. Single particles
are inactive and do not move. Two particles occupying the same site are active
and may hop to neighboring sites following an asymmetric rule. Jumps to the
right or to the left occur with distinct probabilities. In the active state, there
will be a net current of particles to the right or to the left. We have found that
the critical behavior related to the transition from the active to the absorbing
state is distinct from the symmetrical case, making the asymmetry a relevant
field.

PACS numbers: 05.65.+b, 05.70.Ln, 05.40.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Self-organized criticality (SOC) has been successfully described by sandpile lattice models
[1–3]. There is a close connection between SOC and stochastic lattice models with infinitely
many absorbing states and a nondiffusive conserved field [3–19]. Some of them, which concern
us here, are called fixed-energy sandpile models [3, 7, 9, 12, 16, 18]. The conservation law
distinguishes these models from other models with infinitely many absorbing states such as
the pair contact process [20]. As one increases the density of particles, which represents the
nondiffusive conserved field, the lattice models with infinitely many absorbing states display
a continuous transition from an absorbing state to an active state. At low densities, the system
is trapped in one of the many absorbing states. Above a certain critical density, it is found in
an active state with a nonzero density of active sites. The critical behavior places these models
into a unique universality class called the Manna universality class, which is distinct from the
directed percolation universality class.
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Table 1. Transition probabilities of the asymmetric model (q = 1 − p).

020 → 002 q2 120 → 102 q2

020 → 101 2pq 120 → 201 2pq

020 → 200 p2 120 → 210 p2

021 → 012 q2 121 → 112 q2

021 → 102 2pq 121 → 202 2pq

021 → 201 p2 121 → 211 p2

022 → 112 2pq 220 → 202 q2

022 → 202 p2 220 → 211 2pq

122 → 212 1 − q2 221 → 212 1 − p2

Among models with infinitely many absorbing states with conserved nondiffusive fields
we find the fixed-energy sandpile models [7, 9] which are variants of the Manna model [3].
The Manna model is defined on a lattice in which each site can have any number of particles.
A site is considered active if it has two or more particles. At each time step, two particles of an
active site jump to neighboring sites. If the number of particles is sufficiently low, the system
will eventually be trapped into one of the many absorbing states. However, if the number of
particles is sufficiently high, the toppling of particles generates active sites, and the system
finds itself in an active state. Here we are concerned with a version of the Manna model in
which the maximum height, which is the maximum number of particles in a site, is restricted
to 2 [12, 18]. In this restricted version, each site of a lattice can be occupied at most by two
particles. A site with two particles is an active site. If a site is empty or has only one particle,
it is inactive. At each time step a site is chosen at random. If it is active, one tries to move the
two particles to neighboring sites. If the chosen neighboring site has already two particles, the
jump is not allowed and the particle remains in the original site.

Specifically we study here an asymmetric version of the height restricted Manna model
in one dimension. In this asymmetric version, the jump probability to the right is greater
than the jump to the left. This bias implies a net flux of particles to the right. We have
found that for any bias there is a continuous transition from an active to a nonactive phase,
as expected, but the critical exponents are different from those of the symmetric case. The
asymmetry is therefore a relevant property with respect to the critical behavior. The critical
exponent related to the order parameter is found to be β = 1.0, and the exponent related to the
spatial correlation function is found to be ν⊥ = 2.0. The quantities used to characterize the
critical behavior were obtained by numerical simulations. The phase diagram was obtained
by numerical simulations and mean-field approximations.

2. Model

Each site of a one-dimensional lattice can be either empty, occupied by just one particle or
occupied by two particles. A site having two particles is called active and the two particles
are allowed to leave the site. The other sites, empty or with one particle, are inactive. At
each time step a site is chosen at random. If it is inactive, the configuration is unchanged. If
the chosen site is active, then one attempts to move the two particles to the neighboring sites
according to the following rules. One of the particles moves to the left with probability p
and to the right with probability q = 1 − p. If the chosen neighboring site has already two
particles, there is no move. The same procedure is used for the other particle. These rules lead
us to the transition probabilities shown in table 1. The asymmetric model is invariant under
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Figure 1. Critical line ρc versus p, obtained from pair mean-field approximation (squares), from
three-site mean-field approximation (diamonds) and by numerical simulation and finite-size scaling
theory (circles). The active state occurs above the critical line and the absorbing state below it.
The critical line obtained from simulation becomes singular at p = 0, p = 1/2 and p = 1.

the operation p → 1 − p and time inversion. It suffices therefore to study the model in the
interval 0 � p � 1/2.

When p = 1/2, the model is symmetric and corresponds to the independent model studied
by Dickman et al [12] and Dickman [18]. The symmetric model exhibits an active state with
nonzero density of active sites ρa, which acts as the order parameter, when the density of
particles ρ is greater than ρc = 0.9297. The asymmetric model, p < 1/2, behaves similarly
but with a critical density of particles ρc(p) that decreases with decreasing values of p as can
be seen in figure 1, reaching the value ρc = 1/2 when p → 0.

When p = 0, that is, when p is set equal to zero, the system becomes singular and there
is no phase transition. In this case, the only allowed transitions, according to table 1, are

20 → 02 and 21 → 12, (1)

each occurring with probability 1. The active number of sites, as well as the number of sites
with just one particle, does not change and becomes determined by the initial condition. In
fact, as there is no creation or annihilation of active sites, this problem can be regarded as an
asymmetric diffusion of three types of particles: 0, 1 and 2. Particles of type 2 can move only
to the right. Particles of types 0 and 1 can move only to the left. As a consequence, particles
of types 0 and 1 do not exchange places and their relative positions are determined uniquely
by the initial configuration.

3. Mean-field approximation

Let us denote by P0, P1 and P2 the probability of a site being empty, occupied by just one
particle and occupied by two particles. The density of particles is ρ = P1 + 2P2, which is a
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conserved quantity. Since P0 + P1 + P2 = 1, we are left with just one independent quantity
which we choose to be P0. The time evolution of this quantity is given by

d

dt
P0 = 2pq{P121 − P020 − P022 − P220}, (2)

which is valid as long as p �= 0 and p �= 1, where Pxyz denotes the probability of three
consecutive sites being in states x, y and z. Using the simplest mean-field approximation in
which Pxyz = PxPyPz we get the equation

d

dt
P0 = 2pqP2

{
P 2

1 − P 2
0 − 2P0P2

}
, (3)

which is a closed equation for P0 since P1 = 2(1 − P0) − ρ and P2 = ρ − (1 − P0).
In the stationary state, the right-hand side vanishes and it can be solved for P0. The

solution gives the following result for P2 = ρa, which is the density of active sites and is
regarded as the order parameter,

ρa = 2 −
√

5 − 2ρ. (4)

The order parameter vanishes continuously at ρ = ρc = 1/2. Near the critical line
ρa ∼ (ρ − 1/2), giving an exponent β = 1 for the order parameter. We note that the
critical line predicted by this mean-field approximation is independent of p. To remedy this
artifact of the simplest mean-field approximation, we will proceed to the pair mean-field
approximation.

The pair mean-field approximation involves two-site probabilities Pxy in addition to one-
site probabilities Px. Of the nine two-site probabilities, five can be determined from the other
four, chosen to be P00, P01, P10, P11 and P0. The evolution equations for these variables are

d

dt
P00 = (p2 + q2)P020 − (1 − p2)P200 − (1 − q2)P002, (5)

d

dt
P01 = 2pq(P020 + P120 + P002) + (p2 + q2)P021 − (1 − q2)P012 − (1 − p2)P201, (6)

d

dt
P10 = 2pq(P020 + P021 + P200) + (p2 + q2)P120 − (1 − q2)P102 − (1 − p2)P210, (7)

d

dt
P11 = 2pq(P022 + P220 + P102 + P201)

+ (p2 + q2)P121 − (1 − q2)P112 − (1 − p2)P211. (8)

Using the following approximation for the three-site probabilities, Pxyz = PxyPyz/Py , the
above equations together with equation (2) become a closed set of equations for the independent
variables P00, P01, P10, P11 and P0. The set of closed equations is integrated numerically, and
the point where the order parameter ρa = P2 vanishes gives the critical density ρc. The critical
line is shown in the phase diagram of figure 1 and now it depends on the parameter p. The
line is smooth and reaches a maximum at p = 1/2 for which ρ = 3/4. The critical exponent
β = 1 is the same as the simple mean-field approximation and is independent of p.

We have also used a three-site mean-field approximation in which the four-site
probabilities are written in terms of three- and two-site probabilities, that is, Pxyzw =
PxyzPyzw/Pyz. After setting up the equations for the three-site probabilities and using this
approximation, we have performed a numerical integration and determined the critical density
ρc for several values of p. The critical line determined by using this approximation is shown
in figure 1.
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We have seen that when p �= 1/2, a particle on an active site jumps to the left or to
the right with distinct rates. Therefore, we expect that at the stationary state and periodic
boundary conditions, there will be a flux of particles to the right or to the left according to
whether 0 � p < 1/2 or 1/2 < p � 1, respectively. Using the rates of table 1, it is possible
to set up an expression for the particle flux φ in terms of two-site probabilities. Consider, for
example, the transition coming from the first row of the left panel. Its contribution to the flux
will be 2q2P020 because two particles jump to the right. The contribution coming from the
third row of the right panel will be −p2P120 because one particle jumps to the left. Using this
process we get the following expression:

φ = 2(q − p)P020 + 2qP220 − 2pP022 + (2q2 − p2)P120 − (2p2 − q2)P021

+ (1 − p2)P221 − (1 − q2)P122 + (q − p)P121, (9)

which can be written in the simplified form

φ = (q − p)(P2 − P22) + q2P20 − p2P02. (10)

Inserting the stationary solution of any mean-field approximation in this expression, we get
the particle flux φ. In the simple mean-field approximation

φ = (1 − 2p)(2 −
√

5 − 2ρ)(2 − ρ). (11)

In the pair and three-site mean-field approximation, we determined φ numerically. Figure 3
shows the result for the three-site approximation. The result (10), which is exact, is also used
to calculate φ from numerical simulations.

4. Numerical simulations

We have simulated the asymmetric model in lattices of sizes from L = 500 up to L = 6000,
with periodic boundaries starting with a random uncorrelated configuration with n particles.
The simulation was performed according to the rules stated in section 2. We keep a list of
active sites from which we choose a site and its first neighbors to be updated at each time step.
By using this procedure we avoid wasting computer time by not choosing inactive sites. The
time in units of Monte Carlo steps is corrected by an appropriate increase in time. That is, at
each updating the time is increased by a value equal to n−1

a , where na is the number of active
sites before the updating step. For each value of the set L,p and n, we performed from 1000
up to 5000 independent runs. The average values of the interest quantities were obtained by
discarding initial configurations, up to time t0, and extending each run up to tmax = t0 + t .
Typical observation times t were 105, 2 × 105, 4 × 105 Monte Carlo steps. Here we focus on
two quantities: the number of active sites and the flux of particles.

For the system defined here, since its length is finite, all initial conditions will eventually
drive the system toward an absorbing configuration, if n < L, even when the expected
stationary state is an active state. To overcome this inconvenience, we have slightly changed
the dynamics of the model: whenever the system falls into one of the absorbing configurations
we create artificially an active site by moving randomly chosen particles to this site. This
extra rule will force the system to continue in the active state, even for a small number of
particles. This in turn gives rise to an order parameter ρa = 〈na〉/L which will always be
nonzero. However, in the limit L → ∞, the order parameter ρa will vanish if p � pc and
will approach a nonzero value if p > pc. This behavior is illustrated in figure 2 which
shows ρa as a function of the density of particles ρ = n/L around the critical point, for
p = 0.4.

The particle flux φ was calculated by determining the average numbers of pairs of types
22, 20, 02 and using the exact equation (10). Figure 3 shows φ as a function of ρ for several
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Figure 2. Density of active sites ρa versus density ρ for p = 0.4 and several values of the system
size L. The critical point occurs at ρc = 0.822(1).
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Figure 3. Flux φ versus density ρ for several values of the parameter p as determined
from simulations (continuous lines) and the mean-field approximation at the level of three-site
approximation (dashed lines).

values of p. This quantity is nonzero only in the active state and vanishes continuously when
ρ → ρc and when ρ → 2.

To locate the critical point, we have used two methods. The first is based on the finite-size
scaling. For a fixed value of p we assume the following scaling hypothesis,

ρa(ρ, L) = L−β/ν⊥F(εL1/ν⊥), (12)

where ε = ρ − ρc and F(x) is a universal function. According to this scaling form, when
ρ = ρc, ρa ∼ L−β/ν⊥ , implying that ln ρa behaves linearly with ln L when ρ = ρc, with a
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Figure 4. Log–log plot of density of active sites ρa versus the system size L at p = 0.4, for several
values of density ρ.

slope equal to −β/ν⊥. From the plot of ln ρa as a function of ln L, for different values of ρ,
the critical point is determined as can be seen in figure 4 for the case p = 0.4.

In the second method, we use the ratio of moments of different orders. Here we use the
ratio

m =
〈
n2

a

〉

〈na〉2
, (13)

calculated from different values of ρ and L, at constant p, where na is the number of active
sites. At the critical point, the ratio m is independent of the system size L [12]. Therefore,
a plot of m versus ρ for various values of L shows curves that cross at the critical point, for
sufficiently large values of L. Since the possible values of ρ form a discrete set, the crossing
point is obtained by interpolating cubic splines along the data points.

We used both methods to obtain estimates of the critical point for various values of p. The
lines of critical points determined numerically by both methods coincide within numerical
errors and are shown in figure 1. Having determined the location of the critical point, the
critical exponents β, related to the critical behavior of the order parameter

ρa ∼ |ρ − ρc|β, (14)

were obtained by plotting ln ρa as a function of ln |ρ − ρc|. We remark that the particle flux
φ was found to vanish at the critical point with the same critical exponent β. After finding β,
we obtained the slope of ln ρa as a function of ln L, at the critical point, which equals −β/ν⊥,
where ν⊥ is the exponent associated with the spatial correlation length.

The critical exponents β and ν⊥ are shown in table 2 together with the critical value ρc

of the particle density for several values of the parameter p. The critical exponents have the
same value, within the numerical errors, for all values of p such that 0 < p < 1/2. The
same is true for the moment ratio m. For comparison, the last two rows of table 2 show
the critical exponents for the symmetric case. We see that the exponents for the asymmetric
case are distinct from the symmetric case even for very small bias. This implies that the
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Table 2. Critical density ρc and critical exponents β and ν⊥ for some values of p. The last column
shows the moment ratio m at the critical point. The results in the last two rows are taken from [12]
and [18], respectively.

p ρc β/ν⊥ β m

0.01 0.56(1) 0.45(2) 1.08(8) 1.23(3)
0.1 0.634(1) 0.53(2) 1.07(4) 1.220(5)
0.2 0.687(3) 0.50(2) 1.09(9) 1.233(4)
0.3 0.748(3) 0.50(2) 1.07(7) 1.238(4)
0.4 0.820(3) 0.54(3) 1.04(5) 1.238(5)
0.49 0.910(1) 0.61(5) 1.0(1) 1.214(7)
0.5 0.929 65(3) 0.247(2) 0.412(4) 1.1596(4)
0.5 0.929 780(7) 0.213(6) 0.289(13) 1.142(8)

asymmetry is a relevant field with respect to the critical behavior. For all values of p, distinct
from p = 0, p = 1/2 and p = 1, the exponents are the same and consistent with the values
β = 1.0 and ν⊥ = 2.0.

Analyzing the critical line obtained by numerical simulations we see that it is located above
the mean-field critical lines. The remarkable result, however, is that the numerical critical line
becomes singular at ρ = 0, ρ = 1/2 and ρ = 1, suggesting a nonanalytical behavior around
those two points. This singular behavior is confirmed by determining numerically the slope of
ρc at these points, which was found to diverge. By assuming the power law behavior around
the singular points

|ρc − ρ0| ∼ |p − p0|μ, (15)

we found μ = 0.40(1) for p0 = 0 and p0 = 1 and μ = 0.72(4) for p0 = 1/2. The
nonanalyticity of the critical line at the symmetric point p = 1/2 gives support to the change
of universality class at this point.

5. Conclusion

We have studied here an asymmetric version of the height restricted Manna model in one
dimension in which the jumps of particles to the right and to the left have distinct probabilities.
We have found that for any bias there is a continuous transition from an active to a nonactive
phase, as happens in the symmetric case. We have found that the critical exponents have the
same values along the critical line except that they are distinct from those of the symmetric
case. This makes the asymmetry a relevant field with respect to the critical behavior. The
critical exponents are found numerically to be β = 1.0 and ν⊥ = 2.0.
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[9] Dickman R, Alava M, Muñoz M A, Peltola J, Vespignani A and Zapperi S 2001 Phys. Rev. E 64 056104
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